Building fast proxies for optimization

of thermal reservoir simulation

Matthieu Rousset

December 16, 2011

Abstract

With decreasing amounts of conventional
energy resources available, production of
unconventional oil and gas has become an
important new source of energy. Steam-
assisted gravity drainage (SAGD) is a
widely used process, allowing the produc-
tion of very heavy oils. The numerical
simulation of SAGD, however, is complex
and highly CPU /time intensive. Moreover,
the economical cost of this process is high
and production/design optimization could
be very beneficial. The high CPU/time re-
quirements, however, render optimization
impractical. In this paper, we aim at the
creation of fast proxies for SAGD reservoir
simulation, with the objective of maximizing
net present value (NPV) with respect to se-
lected design parameters. For two practical
examples, we use the commercial reservoir
simulator STARS to run a number of train-
ing simulations. These results are then pro-
cessed for the creation of an artificial neural
network (ANN) and a suport vector regres-
sion (SVR) model. Sensitivity analysis is
then performed on some of the proxies pa-
rameters in order to assess the quality of
the models. The key question of how many
training runs are required in order to ob-
tain robust proxies for optimization, is also
answered with sensitivity analysis. Finally,
optimization is performed using the ANN
proxy model.

1 Introduction

When producing oil from the subsurface, engineers
often build a detailed geological model of the oil
reservoir. This numerical representation of the un-
derlying rocks and fluids is then used to predict the
flow behavior, under a given set of controls. The
controls usually represent the amount of pressure

or flow that is imposed at the producing and inject-
ing wells. An other important input feature is the
placement of the wells. In this project, we focus on
thermal applications, which require the injection of
heat to achieve oil production. Specifically, we con-
sider the steam-assisted gravity drainage (SAGD)
process, which involves injecting steam into the
subsurface in order to lower the oil viscosity, and
allow production by gravity. Simulation of oil pro-
duction from SAGD is a very difficult task, because
it involves reproducing complex physical phenom-
ena and strong nonlinearities (e.g. large variation
of fluid properties with temperature). As a result,
the simulation of these processes is very time/CPU
intensive. Another aspect of this process, is its
higher economical cost compared to traditional oil
production. This makes it an ideal candidate for
optimization, which aims at maximizing the pre-
dicted profits - e.g. net present value (NPV) -
by finding the optimal design parameters and/or
sequence of input controls. Unfortunately, opti-
mization algorithms require running many simu-
lations, which is often impossible with CPU in-
tensive thermal simulations. In this work, we in-
vestigate on the creation of fast proxies for ther-
mal reservoir simulations, using an artificial neu-
ral network (ANN) and a support vector regression
(SVR) model. The proxies are then used to per-
form optimization, which is of high practical inter-
est.

To the authors knowledge, there have been only
a few attempts at the creation of fast proxies for
thermal applications. Queipo et al. [1] have re-
ported the use of neural networks to build prox-
ies of the SAGD process, and have used them to
perform global optimization of net present value.
Although they seem to achieve good optimization
results, it is unclear how accurate the proxy mod-
els are. Vanegas et al. [2] have developed a semi-
analytical proxy model for SAGD, based on the
widely used analytical model from Butler. It al-
lows the use of heterogeneous fields of rock perme-
ability but it is still based on a simplified physical
description.

Building fast proxies for optimization of thermal reservoir simulation

2 Machine learning methods

2.1 Artificial neural network (ANN)

ANN is a combination of artificial neurons that
tries to mimic the structure of biological neural
networks observed in nervous systems. It is com-
posed of input nodes, output nodes and a number
of hidden layers, containing artificial neurons. The
first layer is called the input layer, containing all
the input nodes, and the last layer is called the
output layer containing all the output nodes. The
number of hidden layers and the artificial neurons
in each of these layers is a design parameter that
can be varied. Fig. 1 shows an example of ANN
with only one hidden layer of 4 artificial neurons.

Hidden

Input

Output

Figure 1: Example of an artificial neural network
(source: Wikipedia)

We let u denote the input of the ;% node of
the i*® layer and v{ denote its output. The scalar
n; represents the number of nodes in layer i and
k the total number of layers. For the input layer,
we have u} = v and for the output layer, we have

ul, = vi For each of the hidden layers, we have

ng
. Y .
vl = ZWZJ uf + b (1)

{=1

where W, is the weight matrix and b; is the bias
vector between the i*" and the i + 1*" layers.

The neurons themselves represent activation
functions which can be any differentiable func-
tion. In our implementation, we choose the sig-
moid function, defined as follows:

B 1
T 1l4e®

g(x) (2)

The neural network is fully defined by:

1. The interconnection pattern between different
layers of neurons

2. The activation function that converts a neu-
ron’s weighted input to its output activation.

3. The learning process for updating the weights
of the interconnections

The first two points are defined by the weight
matrix and the bias vector. The last point is
achieve by minimizing some kind of error. In this
work, we use Matlab neural network toolbox to
build an ANN with one hidden layer of sigmoid
neurons. FKError minimization is achieved by us-
ing the Levenberg-Marquart backpropagation al-
gorithm. Starting with a set of randomly gener-
ated initial guess for the weights and biases, the
algorithm finds the parameters that minimize the
error between the desired and the actual output.
Note that the number of input nodes is equal to the
number of input features and there is only one out-

put node since we are using only one target variable
(the NPV).

2.2 Support vector

(SVR)

First proposed by V. Vapnik et al. [3], SVR is a
regression model that aims at predicting the out-
put of a nonlinear function for some given values
of the input features. The general idea of SVR is
to perform linear regression in a high dimensional
feature space where the input data are mapped via
a nonlinear function. Similarly to support vector
machine, which is used for classification, SVR only
consider a small number of training points to per-
form the prediction because it ignores any train-
ing data that is close (within a threshold €) to the
model prediction. We include here a bried descrip-
tion of SVR and more details can be found in [3].

In SVR, the goal is to find a function f(x) that
has at most e deviation from the actual targets y(*)
for all the training data, and at the same time is
as flat as possible. In the case where f(x) is a
linear function of the form f(z) =< w,x > +b, the
resulting primal optimization problem is given by:

regression

. 1 2 % *
minimize 5 |wll +02(§i+§¢)
Y- <w 2z > —b<e+§
<w,z® >y 4 h< et &

subject to

(3)
Here, <, > represents the inner product of two vec-
tors. The norm |lwl||* measures the flatness of the
proxy, and the constraints force the model to ap-
proximate all training points within e precision.
& and & are slacks variables introduced to allow

Building fast proxies for optimization of thermal reservoir simulation

some trade-off between the flatness of the func-
tion and the compliance with the e deviation con-
straints. C represents a weight given to the penalty
for violating the constraints.

The corresponding dual problem is given by:

7,7=1
max m m
—eX (@it al) = Yy (i - af)
=1 =1

ot {2711 (i —)

Ogai,a;‘SC

The optimization problem in Eq. 4 is convex and
can be solved using a readily available optimization
algorithm. It is also clear from Eq. 4 that SVR
can be kernelized by replacing terms of the form
< x,z > with a kernel function K(x,z). In this
work, we use libSVM [] for our implementation of
SVR with a Gaussian kernel function.

3 Numerical examples

3.1 Well placement optimization

An oil reservoir with a net thickness of 38 meters,
a width of about 164 meters and a length of 900
meters is represented with a 2D model containing
51 x 38 grid blocks. Each grid block is rectangular
with dimensions 1.6 m by 1 m and the model rep-
resents half of the entire reservoir. A pair of SAGD
horizontal wells is placed on the symmetry plane.
Our goal is to find the best position for the pro-
ducer and injector wells on this symmetry plane.
The two design variables are the distances of the
injector and producer wells from the bottom of the
reservoir.

Figure 2: Schematic illustration of reservoir model
1 with the wells represented in black

We use a Matab script to run all possible combi-
nations of input parameters, using the commercial
simulator Stars. Since the injector well must al-
ways lie above the producer well, this represents

703 possible well placements. The net present
value (NPV) is then computed for each configu-
ration from the formula:

NPV = Qopo + Qgpg - prw - Qst (5)
where p,, pg, pw and ps represent the price of
oil, price of gas, cost of producing water and the
cost of injecting steam respectively. They are set
to 80 $/bbl, 5 $/MMSCF, 10 $/bbl and 3 $/bbl.
Oil and gas production are denoted with @, and
Qg4, water production with @Q,,, and steam injec-
tion with Q5. Among the 703 sample points, 50
are picked randomly and labeled as testing sam-
ples. The remaining 653 sample points are used
for training the models. We first create a num-
ber of artificial neural network proxies using sub-
sets of the training samples set of increasing size.
We use one hidden layers containing 10 artificial
neurons. For each model, we compute the error
between the ANN response and the true response
using the testing set. Results are displayed in Fig.
3, and show that the error decreases sharply with
increasing size of the training set until 100 sam-
ple points. Then, it remains close to about 0.05
for training sets containing more sample points.
We also checked the sensitivity of an ANN model

0.7,

ANN Error|

ANN Error
o o o o
[

o
N}

o

o 100 200 500 600 700

300 400
Number of training points

Figure 3: ANN testing error sensitivity to number
of training samples

trained with a set of 100 training samples, to the
number of hiden layers and number of artificial
neurons. For this example, we found that ANN
was not very sensitive to these parameters.

We follow the same procedure to build a number
of SVR proxies with increasing number of training
samples. Results are plotted in Fig. 4. SVR pro-
vides a relatively lower testing error with a smaller
number of training samples than ANN. The error
does not decrease as sharply however, with an in-
creasing number of training points, but it reaches
lower values.

Building fast proxies for optimization of thermal reservoir simulation

— Error on testing set

ANN Error

0 100 200 500 600 700

300 400
Number of training points

Figure 4: SVR testing error sensitivity to number
of training points

We also plot in Fig. 5 and Fig. 6, the sensitivity
of an SVR models trained with 200 training points
to the value of € and C' respectively, as defined in
Eq. 3. It is clear from Fig. 5 that epsilon must be
chosen to be as small as possible. Indeed, a smaller
value of epsilon leads to a smaller testing error. On
the other hand,we see from Fig. 6, that the penalty
function weight C' should be chosen greater than 1
in order to insure minimal testing error.

—Error on testing set

SVRError

01 02 03

04 05 08
Value of epsilon

Figure 5: SVR testing error sensitivity to the value
of e

Finally we illustrate the use of such proxy models
for well placement optimization. We apply a gen-
eralized pattern search algorithm where the objec-
tive function is the NPV, computed from an ANN
proxy model trained with 100 training samples.
We show the evolution of the objective function
with the number of iterations during the optimiza-
tion in Fig. 7. The optimal placement found from
the optimization is to have the producer well in
grid block 15 and the injector well in block 36.
This matches exactly the best positions found by
exhaustive search.

|—Error on testing set|

SVR Error

3 B =] g
10 10 10 10 10 10
Value of penalty on constraints

Figure 6: SVR testing error sensitivity to the value
of penalty function weight

Q 0
N®

Net Present Value ($MM)
o

G 50 100 150 200 250 300
number of iterations

Figure 7: Optimization using Generalized pattern
search with an ANN proxy

3.2 Production control

For the same SAGD model as presented in the pre-
vious section, we now seek to create a proxy model
allowing the optimization of the well controls. For
a given position of the wells, we set the pressure
for both the producer and injector wells at 5 in-
tervals during the entire production time. So our
goal is now to create proxy models that take these
10 parameters as input, and return the net present
value as an output. We run 750 simulations us-
ing the commercial simulator Stars and label 50
randomly chosen cases as testing samples.

We create a number of artificial neural networks
with an increasing number of training samples and
plot the testing error for each of these models in
Fig. 8. We see that ANN can yield a very low
testing error for this problem with less than 200
training samples. We also performed sensitivity
analysis for the number of layers and the number
of artificial neurons but we didn’t find these pa-
rameters to be significant to the testing error.

We also build SVR models with increasing num-
bers of training samples. Results are displayed
in Fig. 9. They show that the testing error de-

Building fast proxies for optimization of thermal reservoir simulation

0.01

ANN Error|

0.016-
0.014-

0.012-

ANN Error
o
o ©
S o
@ =

0.006!
0.004~

0.002~

] 100 200 500 600 700

300 400
Number of training points

Figure 8: ANN testing error sensitivity to number
of training samples

creases very sharply and then becomes stable for
more than 10 training samples. This surprisingly
sharp decrease of the testing error is probably due
to a low sensitivity of the target value (NPV) to
many combinations of the input parameters.

—Error on testing set

0018
0015

0014

SVR Error

0012

001 L/\/\‘,_\/\/\/

0 100 200

300 400 500 600 700
Number of training points

Figure 9: SVR testing error sensitivity to number
of training samples

Finally, we illustrate the use of these proxy mod-
els by using the generalized pattern search algo-
rithm to perform the optimization of NPV. We plot
in Fig. 10 the evolution of the objective value. We
verified that the optimized NPV is higher than any
NPV found in the 750 simulations performed pre-
viously.

4 Conclusions

We used both ANN and SVR to create fast proxy
models for complex thermal reservoir simulations.
We verified that ANN and SVR can provide ro-
bust proxies for the optimization of production
controls and well placements. For the two sim-
ple cases considered in this work, we found that
the number of training simulations required to ob-
tain a small testing error is in the order of 100 to

Net Present Value ($MM)

0 10 20 30 40 50 60 70
number of iterations

Figure 10: SVR testing error sensitivity to number
of training samples

200. We have the used the ANN proxy to per-
form optimization using the generalized pattern
search algorithm. This requires in the order of
100 to 200 simulation runs. In order to obtain
a significant runtime speedup using these proxies,
the training runs would need to be run in paral-
lel. In concusions, ANN and SVR are promising
”black-box” approaches to create fast proxies for
optimization when massive parallel computing ca-
pability is available.

References

[1] Nestor V. Queipo, Javier V. Goicochea P., and
Salvador Pintos. Surrogate Modeling-Based
Optimization of SAGD Processes. SPE, 2001.

[2] J.W. Vanegas, P. Clayton, V. Deutsch, and
L. B. Cunha. Uncertainty assessment of sagd
performances using a proxy model based on
butler’s theory. SPE, 2008.

[3] A.J. Smolatand Bernhard Scholkof. A tutorial
on support vector regression. 2003.

